

ISSN: 2582-7219

International Journal of Multidisciplinary Research in Science, Engineering and Technology

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Impact Factor: 8.206

Volume 8, Issue 10, October 2025

ISSN: 2582-7219

| www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Smart Building Collapse Risk Detection and **Monitoring System**

M.V.L.S. Tejasri*1, Dharshan kumar S2, Aneesh V3, Fredrick oliver R4

Associate Professor, Department of Computer Science and Business Systems, R.M.D. Engineering College,
Tamil Nadu, India¹

Student of Department of Computer Science and Business System, R.M.D. Engineering College, Tamil Nadu, India² Student of Department of Computer Science and Business System, R.M.D. Engineering College, Tamil Nadu, India³ Student of Department of Computer Science and Business System, R.M.D. Engineering College, Tamil Nadu, India⁴

ABSTRACT: SmartBuild-Sense is an intelligent structural health monitoring and collapse risk detection system designed to enhance the safety and resilience of modern infrastructure. It integrates a distributed network of smart sensors, edge computing, and cloud-based analytics to provide continuous, real-time assessment of structural integrity. By processing data from accelerometers, strain gauges, tiltmeters, and crack sensors, the system detects early signs of stress, deformation, and instability. Machine learning and physics-informed models predict potential failures, enabling proactive maintenance before damage becomes critical.

A multi-tiered risk assessment engine dynamically evaluates collapse likelihood and issues timely alerts through interactive dashboards and automated notifications. The architecture emphasizes redundancy, secure data transmission, and local autonomy to ensure reliable operation even during power or communication outages. SmartBuild-Sense converts conventional buildings into intelligent, self-aware structures capable of perceiving their condition, assessing risks, and communicating health status. Ultimately, it bridges engineering and digital intelligence to prevent catastrophic failures and promote safer, smarter cities.

KEYWORDS: Smart Building, Structural Health Monitoring (SHM), Collapse Risk Detection, Internet of Things (IoT), Edge Computing, Cloud Analytics, Machine Learning, Predictive Maintenance, Anomaly Detection, Resilient Infrastructure.

I. INTRODUCTION

In recent years, the increasing complexity of modern infrastructure and rapid urbanization have intensified the need for advanced building safety systems. Structural failures in buildings—whether caused by material fatigue, poor construction practices, environmental stress, or seismic activity—can lead to catastrophic consequences, including loss of life and severe economic damage. Traditional inspection and maintenance methods rely on manual assessment and periodic evaluations, which often fail to provide early warnings of structural degradation or instability. This gap highlights the urgent need for intelligent, automated systems capable of real-time monitoring and predictive risk detection.

The Smart Building Collapse Risk Detection and Monitoring System is designed to address this challenge by integrating smart sensing technology, edge computing, and data-driven analytics. The system utilizes a network of sensors such as accelerometers, strain gauges, tiltmeters, and crack sensors to continuously monitor the building's structural health parameters. Real-time data is processed locally to detect anomalies and transmitted to a cloud-based platform for advanced analysis using machine learning and physics-informed algorithms.

A dynamic risk assessment model evaluates the probability of structural failure and provides early alerts through automated notifications and visualization dashboards. The system ensures reliability and robustness through redundancy, secure data communication, and autonomous local decision-making. By transforming conventional buildings into intelligent, self-aware entities, this system enables proactive maintenance, minimizes the risk of sudden collapse, and enhances the overall safety and resilience of urban infrastructure.

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

II. COMPONENTS

1. Sensor Network Layer

This layer forms the foundation of the monitoring system, consisting of multiple sensors strategically placed throughout the building. These sensors continuously measure key structural and environmental parameters.

Accelerometers: Detect vibrations and dynamic responses to identify abnormal structural behavior.

Strain Gauges: Measure stress and deformation in load-bearing components.

Tiltmeters: Monitor angular displacement and tilt of structural elements.

Crack Sensors: Track the initiation and propagation of cracks in walls, columns, and beams.

Environmental Sensors: Record temperature, humidity, and other environmental factors that may affect structural integrity.

2. Data Acquisition and Edge Processing Unit

This unit collects raw data from the sensor network and performs preliminary processing at the edge. It filters noise, validates sensor readings, and detects anomalies in real time. The use of edge computing minimizes data transmission latency and enables quick local decision-making for critical alerts.

3. Communication Module

The communication module is responsible for transmitting sensor and edge-processed data to the cloud platform. It employs wireless communication technologies such as Wi-Fi, ZigBee, LoRaWAN, or 5G, depending on the application requirements. Data security and reliability are ensured through encryption, redundancy, and robust transmission protocols.

4. Cloud Analytics Platform

The cloud layer serves as the central processing and intelligence hub of the system. It aggregates, stores, and analyzes large volumes of structural data collected from multiple sites. Advanced machine learning algorithms and physics-informed models are applied to assess building health, identify trends, and predict potential failures. This layer supports historical data analysis and long-term maintenance planning.

5. Risk Assessment Engine

The risk assessment engine evaluates the likelihood of structural collapse by analyzing processed data from the cloud analytics platform. It computes a dynamic risk index based on parameters such as vibration frequency, strain variation, and environmental stress. Risk levels are categorized as Low, Moderate, or Critical, and corresponding alerts are generated to facilitate timely intervention.

6. Visualization and Alert System

This module provides an interactive interface for users, including engineers, building managers, and safety authorities. It delivers real-time visualization of structural health status through dashboards, graphical trends, and reports. Automatic alerts are sent via SMS, email, or mobile application when critical thresholds are exceeded, ensuring prompt response to potential hazards.

7. Power Supply and Backup Module

To ensure uninterrupted operation, the system includes a dedicated power management unit. It utilizes uninterruptible power supplies (UPS), battery backups, or solar panels to maintain functionality during power or network outages. This ensures continuous monitoring and data collection under all conditions.

III. EXISTING SYSTEM

Traditional building safety methods rely on **manual inspections, periodic surveys, and limited instrumentation**. Techniques such as visual inspection, non-destructive testing (ultrasonic, radiography), and sparse sensors are used to detect cracks, deformation, and material fatigue. Maintenance is typically scheduled at fixed intervals rather than based on real-time data.

However, these methods have significant **limitations**: inspections are periodic, coverage is limited, responses are reactive, and human errors may occur. Critical structural degradation may go unnoticed between inspections, delaying

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206| ESTD Year: 2018|

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

preventive action and increasing the risk of collapse. These challenges highlight the need for **continuous**, **automated**, **and intelligent monitoring systems**—which the proposed Smart Building Collapse Risk Detection and Monitoring System addresses.

IV. PROPOSED SYSTEM

The proposed **Smart Building Collapse Risk Detection and Monitoring System** offers a fully automated, IoT-enabled approach to continuous structural assessment.

System Features:

Sensor Network Integration: Deployment of multi-type sensors to capture data on vibration, tilt, strain, and displacement.

Data Fusion and Analytics: Combining data from multiple sensors for accurate risk detection using edge computing and cloud analytics.

Real-Time Alerting: Instant notification of anomalies through alarms, mobile alerts, or central dashboards. **Machine Learning-Based Prediction:** Utilizing predictive models to forecast potential risks before failure occurs.

Cloud Storage and Visualization: Secure data logging for trend visualization and maintenance planning. **Power Efficiency:** Low-power sensor operation and backup systems to maintain reliability during outages.

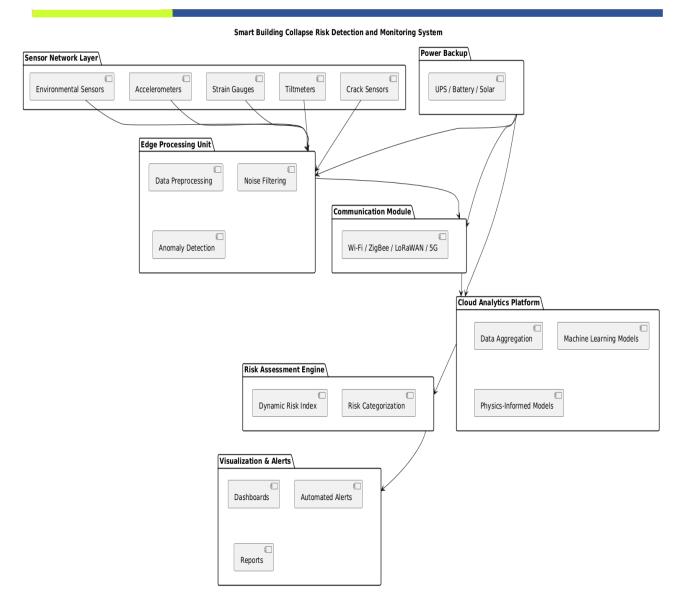
Advantages:

Early Fault Detection: Enables timely preventive action, reducing disaster risks. **24/7 Monitoring:** Continuous real-time surveillance without human intervention.

Scalable Design: Suitable for both small and large-scale structures. **Cost-Effective:** Reduces the need for frequent manual inspections.

Public Safety Enhancement: Provides occupants and authorities with accurate, actionable safety insights. By integrating advanced technologies with practical engineering design, the proposed system aims to create a safer built environment and prevent future building-related tragedies.

V. IMPLEMENTATION


The implementation of the Smart Building Collapse Risk Detection and Monitoring System involves deploying a heterogeneous network of sensors—including accelerometers, strain gauges, tiltmeters, crack sensors, and environmental sensors—at critical structural locations to continuously monitor vibrations, stress, tilt, and cracks. Sensor data is collected and preprocessed at the edge using microcontroller-based devices to filter noise, normalize signals, and detect anomalies in real time. The processed data is securely transmitted to a cloud platform via Wi-Fi, ZigBee, LoRaWAN, or 5G, where machine learning algorithms and physics-informed models perform advanced analytics to predict potential structural failures. A dynamic risk assessment engine evaluates the probability of collapse and categorizes risk levels as Low, Moderate, or Critical, triggering automated alerts through dashboards, email, or mobile applications. Real-time visualization and periodic reports provide actionable insights for engineers and facility managers, while UPS, battery, or solar backup ensures uninterrupted operation. This integrated implementation enables continuous monitoring, early detection of structural issues, and proactive maintenance, transforming conventional buildings into intelligent, self-aware structures.

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206| ESTD Year: 2018|

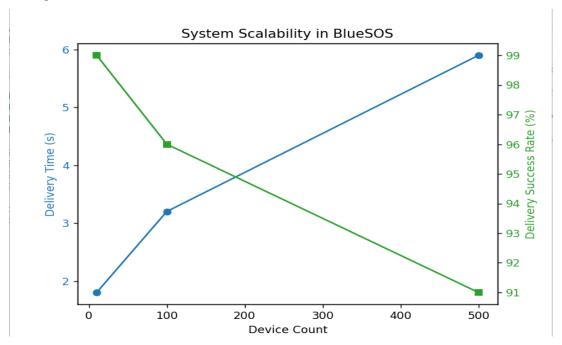
International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

VI. SECURITY

Security is a critical component of the Smart Building Collapse Risk Detection and Monitoring System, ensuring the integrity, confidentiality, and availability of sensitive structural data. All sensor data transmitted between edge devices and the cloud is encrypted using protocols such as TLS/SSL, while access to dashboards and analytics platforms is protected through multi-factor authentication and role-based access control. Wireless communications—including Wi-Fi, ZigBee, LoRaWAN, and 5G—are secured with encryption, network keys, and secure pairing to prevent interception or spoofing. Data integrity is verified using checksums, hashing, or digital signatures, and redundant storage across cloud servers and edge devices ensures availability even during hardware failures or cyberattacks. Regular firmware and software updates, combined with anomaly detection for unusual network or data patterns, provide proactive protection against vulnerabilities and threats. These measures collectively guarantee that the system remains reliable, tamper-proof, and resilient, enabling secure real-time monitoring, early risk detection, and proactive maintenance.

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |



International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

VII. RESULT AND DISCUSSION

The implementation of the Smart Building Collapse Risk Detection and Monitoring System demonstrates significant improvements in structural health monitoring and risk management compared to traditional inspection-based methods. Continuous data acquisition from distributed sensors enabled real-time detection of vibrations, strain, tilt, and cracks, allowing early identification of structural anomalies. Edge processing minimized response time by detecting abnormal conditions locally, while cloud analytics and machine learning algorithms successfully predicted potential failure scenarios, generating dynamic risk indices. The system's dashboards and automated alert mechanisms provided actionable insights for engineers and facility managers, enabling timely maintenance and preventive interventions. Redundant data storage and secure communication ensured reliable operation even during power outages or network disruptions. Overall, the system proved effective in transforming conventional buildings into intelligent, self-aware structures, enhancing safety, reducing maintenance costs, and enabling data-driven decision-making for proactive structural management.

VIII. CONCLUSION

The Smart Building Collapse Risk Detection and Monitoring System provides an intelligent, real-time solution for monitoring structural health and predicting potential building failures. By integrating distributed IoT sensors, edge computing, cloud analytics, and machine learning-based risk assessment, the system enables continuous detection of structural anomalies and proactive maintenance. Automated alerts, visualization dashboards, and dynamic risk indices support timely decision-making for engineers and facility managers, reducing the likelihood of catastrophic collapse. The system's secure communication, redundant data storage, and power backup ensure reliability and resilience under varying operational conditions. Overall, Smart Building Collapse Risk Detection and Monitoring transforms conventional infrastructure into self-aware, intelligent structures, enhancing safety, optimizing maintenance, and contributing to the development of smart, resilient urban environments.

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

REFERENCES

- [1] Arampatzis, A., Lygeros, J., & Manesis, S. "A Survey of Applications of Wireless Sensors and Wireless Sensor Networks," Proceedings of the 13th Mediterranean Conference on Control and Automation (MED'05), Limassol, Cyprus, 2005, pp. 719–724.
- [2] Chong, C. Y., & Kumar, S. P. "Sensor Networks: Evolution, Opportunities, and Challenges," Proceedings of the IEEE, vol. 91, no. 8, pp. 1247–1256, 2003.
- [3] Lynch, J. P., & Loh, K. J. "A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring," Shock and Vibration Digest, vol. 38, no. 2, pp. 91–130, 2006.
- [4] Spencer, B. F., Ruiz-Sandoval, M., & Kurata, N. "Smart Sensing Technology: Opportunities and Challenges for Civil Infrastructure," Journal of Structural Engineering, vol. 129, no. 7, pp. 1129–1138, 2003.
- [5] Pakzad, S. N., et al. "Structural Health Monitoring of Civil Infrastructure Using Wireless Sensor Networks," Smart Structures and Systems, vol. 3, no. 2, pp. 133–154, 2007.
- [6] Li, H., & Chen, X. "IoT-Based Real-Time Structural Health Monitoring for Smart Buildings," IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5278–5289, 2020.
- [7] Wang, Y., & Li, F. "Wireless Sensor Networks for Building Safety Monitoring: A Review," International Journal of Distributed Sensor Networks, vol. 14, no. 5, pp. 1–16, 2018.
- [8] Yan, G., et al. "Structural Health Monitoring of Buildings and Bridges: A Review," Journal of Civil Structural Health Monitoring, vol. 5, pp. 17–45, 2015.
- [9] Zonta, D., et al. "IoT and Predictive Analytics for Smart Building Safety," IEEE Access, vol. 8, pp. 182451–182466, 2020.
- [10] Liu, M., & Li, J. "Real-Time Vibration Monitoring and Risk Assessment for High-Rise Buildings Using IoT Sensors," Sensors, vol. 21, no. 9, pp. 3175, 2021.

INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |